4.3 Solving Polynomial Inequalities

A Sign Chart Method

Use a sign chart to specify the sign of each factor and then combine them to find the sign of the whole factored polynomial.
B Substitution Method
To find the sign of the polynomial expression on each
interval, chose conveniently a number in that interval and evaluate the function.

C Graphical Method

Graph the factored polynomial and then conclude about its sign.

Ex 1. Use a sign chart to solve each inequality.
a) $x(x-1) \leq 0$
b) $\left(x^{2}-x-2\right)\left(x^{2}+1\right)(x-3)^{3} \geq 0$

Ex 2. Use a substitution to solve the following inequality.
$x^{2}\left(x^{2}-4\right)(x+1)>0$

Ex 3. Use the graphical method to solve each inequality.
a) $x(x-1)(x+2)>0$
b) $\left(x^{4}-1\right)\left(x^{2}-9\right) \leq 0$

D Algorithm to Solve Polynomial Inequalities

In order to solve an inequality involving a polynomial expression:

- Move all terms to one side of inequality
- Factor the polynomial
- Use the sign chart or the graphical method to find the sign of the polynomial
- Write the solution set

Ex 4. Solve for x.
a) $(x+1)^{2} \leq(x-2)^{3}+5$
b) $(x-1)^{4}+8 x>4\left(x^{2}+1\right)$

Ex 5. A box with an open top is to be constructed from a square piece of cardboard, 2 m wide, by cutting out a square, of side length x, from each of the four corners and bending up the sides. Find x such that the volume of the box is between $0.3 \mathrm{~m}^{3}$ and $0.5 \mathrm{~m}^{3}$.

